
B.C.A.
101 24

LAB: PROGRAMMING IN C++
II - Semester

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

B.C.A.
101 24

LAB: PROGRAMMING IN C++
II - Semester

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

B.C.A.
II - Semester

101 24

Directorate of Distance Education

LAB: PROGRAMMING IN C ++

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 • Fax: 0120-4078999
Regd. Office: 7361, Ravindra Mansion, Ram Nagar, New Delhi 110 055
• Website: www.vikaspublishing.com • Email: helpline@vikaspublishing.com

Work Order No. AU/DDE/DE1-291/Preparation and Printing of Course Materials/2018 Dated 19.11.2018 Copies - 500

Author:
Dr. Kavita Saini, Associate Professor, Galgotias University, Greater Noida

“The copyright shall be vested with Alagappa University”

LAB: PROGRAMMING IN C ++

BLOCK 1

  1.  Simple Programs using decisions, loops and arrays

  2.  Simple functions & Inline functions

BLOCK 2

  3.  Usage of classes and Objects

  4.  This pointer and Static functions

  5.  Constructors and Destructors

BLOCK 3

  6.  Function overloading

  7.  Operator Overloading

  8.  Friend functions

BLOCK 4

  9.  Inheritance & Multiple Inheritance

10.  Pointers

11.  Polymorphism

12.  Virtual Functions

BLOCK 5

13.  Files

14.  I/O Streams

Syllabi

Introduction

NOTES

	 Self-Instructional
	 Material

INTRODUCTION

C++ has become one of the most popular OOP languages used for developing
real-world applications. C++ is a programming language that extended from
the ubiquitous C language. It treats data as a crucial element—not allowing
it to move freely around the system. Therefore, the main emphasis in C is
on data and not on the procedure. You can design programs around the data
being operated upon in C++. An object-oriented language helps in combining
data and functions that operate on data into a single unit known as object.
C++ is used for developing different types of applications, such as real-time
systems, simulation modelling, expert systems. It also provides flexibility
to a user to introduce new types of objects in his programming on the basis
of the requirement of the application.

This lab manual, Lab: Programming in C++, contains several
programs based on C++ concepts, such as classes, inheritance, constructors
and destructors, to provide the concept of programming. In addition, it will
help students in coding and debugging their programs. The manual provides
all logical, mathematical and conceptual programs that can help to write
programs very easily in C++ language. These exercises shall be taken as the
base reference during lab activities for students of BCA. There are also many
Try Yourself Questions provided to students for implementation in the lab.

NOTES

Self-Instructional
Material 	 1

Lab: Programming in C++
INTRODUCTION

C++ language is invented by Bjarne Stroustrup in 1980 at Bell Laboratories,
New Jersey. C++ language was initially called “C with Classes” but in 1983
this name was changed to C++. C++ is a superset of C.

The purpose of C++ is to overcome this limit and provide a better
way to manage larger, more complex programs, by using object oriented
programming (OOP). C++ is very popular language as it has many features
as mentioned below:

•	 Classes and objects
•	 Encapsulation
•	 Information hiding
•	 Inheritance
•	 Polymorphism

Portable Language

It is the concept of carrying the instruction from one system to another
system. In C++ language .cpp file contain source code, we can also edit this
code and .exe file contain application, only we can execute this file. When
we write and compile any C++ program on window operating system then
that program easily run on other window based system.

Fig. 1.1  Representing the C++ object file running on Windows.

When we can copy .exe file to any other computer which contain
window operating system then it works properly, because the native code of
application of operating system is same.

Lab: Programming in C++

NOTES

	 Self-Instructional
2	 Material

RECOMMENDED SYSTEM / SOFTWARE
REQUIREMENTS

	 1.	 Intel based desktop PC of 166MHz or faster processor with at least 64
MB RAM and 100 MB free disk space.

	 2.	Turbo C++ compiler or GCC compilers.
In this manual we have used Turbo C++. To write C++ code first we

need to open Turbo C++. For every C++ program we need to follow following
steps for writing and executing a program.
Write a program code → save your program (F2) → compile (Alt+F9)
→ Run(Ctrl +F9)
Step 1: Click on Turbo C++ from start menu or double click on Turbo C++
on desktop.

After clicking on Turbo C++ following screen will appear:

NOTES

Self-Instructional
Material 	 3

Lab: Programming in C++Step 2: Click on Start Turbo C++. After clicking on Start Turbo C++ button
following screen will appear:

This is the editor where we will write code of C++ programs.
Step 3: Write a program to print “Hello” on screen (Hello.cpp).

Step 4: Save program by name hello.cpp by pressing F2 key or by using
menu option File → Save As.

Lab: Programming in C++

NOTES

	 Self-Instructional
4	 Material

Step 5: Compile program i.e. hello.cpp by pressing Alt+F9 keys or by using
menu option Compile → Compile:

Step 6: Run program i.e. hello.cpp by pressing Ctrl +F9 keys or by using
menu option Run → Run.

Output:

1. � Write a program that takes two numbers as input and print their
sum and average.
//Program to take two numbers as input and provides
sum and average

#include<iostream.h>

NOTES

Self-Instructional
Material 	 5

Lab: Programming in C++ void main()

{

int num1, num2, sum, avg;

cout<<”Enter two numbers”<<endl; //output statement

cin>>num1; //input statement

cin>>num2;

sum=num1+num2;

avg=sum/2;

cout<<”Sum of two numbers “<<sum<<endl;

cout<<”Average of two numbers “<<avg;

}

Output:

2. � Write a program to swap two numbers without using a third variable.
// Program to swap two numbers without using a third
variable

#include <iostream.h>

void main()

{

int num1, num2;

cout<<”Enter two numbers”<<endl;

cin>>num1>>num2;

num2 = num1+num2;

num1 = num2 - num1;

num2 = num2 - num1;

cout<<”values after swaping :\n”;

cout<<”Value of a Num1 “<<num1<<endl;

cout<<”Value of a Num2 “<<num2<<endl;

}

Output:

Lab: Programming in C++

NOTES

	 Self-Instructional
6	 Material

Try yourself:

	 (i)	Write a program to calculate volume of cylinder.
	 	Volume of cylinder= PI*r*r*h.
	 (ii)	Write a program to calculate curved surface area of cylinder.
	 	Curved surface area of cylinder= 2*PI*r*h
	 (iii)	Write a program to print ASCII value of digits, uppercase and

lowercase alphabets.

 3. � Write a program check whether the given number is even or odd.
// Program to check whether number is even or odd

#include <iostream.h>
void main()
{
int num;
cout<<”Enter a number “;
cin>>num;
if(num%2==0)
{
cout<<”Number is even “;
}
else
{
cout<<”Number is odd “;
}
}

Output:

Enter a number 2

Number is even

4. � Write a program to print the largest number among three numbers
given by the user.
// program print the largest number among three numbers

#include <iostream.h>

 void main()

{

NOTES

Self-Instructional
Material 	 7

Lab: Programming in C++int num1, num2, num3;

cout<<”Enter three numbers”<<endl;

cin>>num1>>num2>>num3;

if(num1 >= num2 && num1 >= num3)

 {

 cout << “Largest number: “ << num1;

 }

 else if(num2 >= num1 && num2 >= num3)

 {

 cout << “Largest number: “ << num2;

 }

 else

 {

 cout << “Largest number: “ << num3;

 }

}

Output:

5. � Write a program to print sum, difference, product and division of two
numbers according to the user choice using Switch case.
#include <iostream.h>

void main()

{

 int num1, num2; char op;

 cout << “Enter two numbers: “;

 cin >> num1 >> num2;

 cout << “Enter operator : “;

 cin >> op;

 switch (op)

 {

 case ‘+’:  cout <<”\n Sum of two numbers “<< 	
					    num1+num2;

 		    break;

Lab: Programming in C++

NOTES

	 Self-Instructional
8	 Material

case ‘-’: �cout <<”\n Subtraction of two numbers “<<
num1-num2;

 break;

case ‘*’: �cout <<”\n Multiplication of two numbers
“<< num1*num2;

 	 break;

case ‘/’:		� cout <<”\n Division of two numbers “<<
num1/num2;

 break;

default:		 cout << “\n Invalid operator”;

 break;

 }

}

Output:

Enter two numbers: 56
9
Enter operator : *
Multiplication of two numbers 504

Try yourself:

	 (i)	Write a program to convert a lowercase alphabet to uppercase
and vice-versa.

	 (ii)	Write a program to check whether a year is leap year or not.
	 (iii)	 Write a program to check whether a given character is uppercase

or lowercase alphabet or a digit or a special character.

6. � Write a program to print table of any number using for loop.
// program to print table of any number

#include <iostream.h>

void main()

{

 int num, i;

 cout<<”Enter a number: “;

 cin>>num;

NOTES

Self-Instructional
Material 	 9

Lab: Programming in C++

cout<<”Table of “<<num<<endl;

for(i=1;i<=10;i++)

{

cout<<num*i<<endl;

}

}

Output:

7. � Write a program to print Fibonacci series (0, 1, 1, 2, 3, 5, 8, 13, 21...).
// Program to print Fibonacci Series using for loop

#include <iostream.h>

void main()

{

 int num, i, a=0, b=1, c;

 cout<<”Enter a number of terms for Series: “;

 cin>>num;

 cout<<”Fibonacci series : \n”;

for(i=0; i<num; i++)

{

cout<<”\n”<<a;

c=a+b;

a=b;

b=c;

}

}

Lab: Programming in C++

NOTES

	 Self-Instructional
10	 Material

Output:

8. � Write a program to check whether a given number is Armstrong.
A number is known as Armstrong number if sum of the cubes of its digits is
equal to the number itself.

For example: 370 is an Armstrong number because:
	 	 370 = 3*3*3 + 7*7*7 + 0*0*0
	 	     = 27 + 343 + 0
		     = 370

// C++Program to check Armstrong Number

#include <iostream.h>

void main()

{

 int num, sum = 0, rem,temp;

 cout<<”Enter a number: “;

 cin>>num;

 temp =num;

while (num>0)

{

rem =num%10;

sum =sum+(rem*rem*rem);

num =num/10;

}

if (temp==sum)

cout<<”Number is Armstrong “<<endl;

else

cout<<”Number is not Armstrong .”<<endl;

}

NOTES

Self-Instructional
Material 	 11

Lab: Programming in C++Output:

Enter a number: 370

Number is Armstrong

9. � Write a program to print table of any number using do while loop.
//C++ program to print table of any number using do
while loop

#include <iostream.h>

void main()

{

 int num, i;

 cout << “Enter any number: “;

 cin >> num;

 cout<<”\n Table of” <<num<<endl;

 i=1;

 do{

 cout<<num*i<<endl;

 i++;

 }while(i<=10);

}

Output:

Lab: Programming in C++

NOTES

	 Self-Instructional
12	 Material

Try yourself:

	 (i)	Write a program to reverse a given number.
	 (ii)	Write a program to check whether a number is prime or not.
	 (iii)	Write a program to convert binary number to decimal number.

10. � Write a program that takes values in an array and also display them.
//C++ program to scan and print values using array

#include <iostreamh>

int main()

{

 int arr[5],i;

 cout << “Enter 5 numbers:\n “;

 for(i=0;i<5;i++)

 cin >> arr[i];

 cout<<”\n Array values are “<<endl;

 for(i=0;i<5;i++)

 cout<<arr[i]<<endl;

}

Output:

11. � Write a program to print the largest value in an array.
//C++ program to print the largest value in an array

#include <iostream.h>

int main()

{

	 int arr[5],i,max;

 cout<<”Enter 5 numbers:\n “;

NOTES

Self-Instructional
Material 	 13

Lab: Programming in C++ for(i=0;i<5;i++)

 	 cin>>arr[i];

			  max=arr[0];

 for(i = 1;i < 5; i++)

 {

 if(max < arr[i])

   max = arr[i];

 }

 cout<<”Largest element”<<max;

}

Output:

12. � Write a program to search an element in the array using binary
search.

Algorithm: Binary Search
INPUT : SORTED LIST OF SIZE N, KEY VALUE KEY
OUTPUT : POSITION OF KEY IN THE LIST = KEY
1. BEGIN
2. [INTIALIZE]
 SET MAX := SIZE
 SET MIN := 1
 SET FOUND := FALSE
 3.WHILE (FOUND IS FALSE AND MAX ≥MIN)
 SET MID := (MAX + MIN)/2
4. IF KEY = LIST [MID] THEN
 SET I : = MID
 SET FOUND := TRUE

Lab: Programming in C++

NOTES

	 Self-Instructional
14	 Material

 EXIT
  ELSE IF KEY < LIST [MID] THEN
 SET MAX := MID -1
  ELSE
 SET MIN := MID +1
  [END OF IF]
  [END OF LOOP]
5. IF FOUND = FALSE THEN
	   WRITE : VALUE IS NOT IN LIST
  ELSE
 WRITE VALUE FOUND AT MID LOCATION
6. END

//C++ program for binary Search

#include <iostream.h>

// Binary Search Function

void binary_search (int a[] , int size , int key)

{

int low ,high ,mid ,flag ;

flag= 0;

low = 0;

high = size -1;

while (low <= high && flag ==0)

{

mid =(low +high)/2;

if (key == a [mid])

{

flag=1;

break;

}

else if (key < a[mid])

{

high = mid -1;

}

else

{

low = mid +1;

NOTES

Self-Instructional
Material 	 15

Lab: Programming in C++}

}

if (flag ==1)

{

cout<<”value found at location”<<mid +1;

}

else

cout<<”value not found”;

}

void main()

{

int arr[10],i,k;

cout<<”Enter 10 values\n”;

for(i=0;i<10;i++)

cin>>arr[i];

cout<<”Enter value to be searched “;

cin>>k;

//call of binary_Search function

binary_search(arr,10,k);

}

Output:

13. � Write a program to sort an array using selection sort.
//C++ program for selection sort

#include <iostream.h>

void selection_sort (int a[], int size)

{

Lab: Programming in C++

NOTES

	 Self-Instructional
16	 Material

 int temp ,i,j, min;

 for(int i = 0; i < size-1 ; i++)

	 {

 min = i ; //considering element i as minimum

		  for(int j = i+1; j < size ; j++)

 {

 if(a[j] < a[min])

 {

 min = j ;

 }

 }

 temp= a[min];

 a[min]=a[i] ;

 a[i]=temp;

 }

}

//main function

void main()

{

int arr[10],i;

cout<<”Enter 10 values\n”;

for(i=0;i<10;i++)

cin>>arr[i];

//call of selection sort function

selection_sort(arr,10);

cout<<” \n Sorted Values \n”;

for(i=0;i<10;i++)

cout<<endl<<arr[i];

}

NOTES

Self-Instructional
Material 	 17

Lab: Programming in C++Output:

14. � Write a program for bubble sort.
Algorithm: Bubble Sort
INPUT   : LIST [] OF N ITEMS
OUTPUT  : LIST [] OF N ITEMS IN SORTED ORDER
1. BEGIN
2. FOR I=1 THROUGH N DO
3. FOR J=N THROUGH I+1 DO
4. IF A[J] < A[J-1] THEN
  SET TEMP =A[J]
  SET A[J] =A[J-1]
  SET A[J-1] = TEMP
5. END

//C++ program for bubble sort

#include <iostream.h>

void bubble_sort (int a[], int size)

{

 int temp ,i,j;

 for(i=0; i<size; i++)

 {

 for(j=0; j<size-1; j++)

 {

Lab: Programming in C++

NOTES

	 Self-Instructional
18	 Material

 if(a[j]>a[j+1])

 {

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 } }

 }

}

//main function

void main()

{

int arr[10],i;

cout<<”Enter 10 values\n”;

for(i=0;i<10;i++)

cin>>arr[i];

//call of bubble sort function

bubble_sort(arr,10);

cout<<” \n Sorted Values \n”;

for(i=0;i<10;i++)

cout<<endl<<arr[i];

}

Output:

NOTES

Self-Instructional
Material 	 19

Lab: Programming in C++15.  Write a program for quick sort.
Algorithm: Quick Sort
QUICK_SORT (ARRAY, FIRST, LAST)
1. SET LOW: = FIRST
  SET HIGH: = LAST
  SET PIVOT: =ARRAY [(LOW + HIGH) /2]
2. REPEAT THROUGH STEP 7 WHILE (LOW ≤HIGH)
3. REPEAT STEP 4 WHILE (ARRAY [LOW] <PIVOT)
4. SET LOW: = LOW+1
5. REPEAT STEP 6 WHILE (ARRAY [HIGH]>PIVOT)
6. SET HIGH: = HIGH-1
7. IF (LOW <=HIGH)
 ARRAY [LOW] <->ARRAY [HIGH]
 SET LOW: = LOW+1
 SET HIGH:= HIGH-1
8. IF (FIORST<HIGH) THEN
 QUICK_SORT (ARRAY, FIRST, HIGH)
9. IF (LOW < LAST)
 QUICK_SORT (ARRAY, LOW, LAST)
10. END

//C++ program for quick sort

#include <iostream.h>

void quick_sort (int a[], int first, int last)

{

int low ,high ,pivot, temp, i ;

low= first ;

high =last ;

pivot =a[(first +last)/2];

do

{

 while (a[low]<pivot)

 {

 low++;

 }

Lab: Programming in C++

NOTES

	 Self-Instructional
20	 Material

 while (a [high]>pivot)

 {

 high--;

 }

 if(low <=high)

{

temp= a [low];

a [low]= a[high];

a[high]= temp ;

low++;

high--;

}

}while (low <=high);

if (first <high)

{

quick_sort (a, first, high);

}

if(low< last)

{

quick_sort (a, low, last);

}

}

void main()

{

int arr[10],i,k;

cout<<”Enter 10 values\n”;

for(i=0;i<10;i++)

cin>>arr[i];

//call of Quick Sort function

quick_sort(arr,0,10);

cout<<” \n Sorted Values \n”;

for (i=0;i<10;i++)

cout<<endl<<arr[i];

}

NOTES

Self-Instructional
Material 	 21

Lab: Programming in C++Output:

16. � Write a program for merge sort.
Algorithm: Two-Way Merge Sort
TWO_WAY_MERGE_SORT (LIST, START, FINISH)
1. � [COMPUTE THE SIZE OF CURRENT SUB-TABLE]
	   SET SIZE := FINISH - START+1
2.  [TEST BASE CONDITION FOR SUB-TBLE OF SIZE ONE]
	   IF SIZE <=1 THEN
	   RETURN
3. � [CALCULATE MID POINT POSITION OF CURRENT SUB-

TABLE]
	   SET MID :=START + SIZE /2 -1
4.  [RECURSIVELY SORT THE FIRST SUB-TABLE]
	   CALL TWO_WAY_MERGE_SORT (LIST, START, MID)
5.  [RECURSIVELY SORT THE SECOND SUB-TABLE]
	   CALL TWO_WAY_MERGE_SORT (LIST, MID + 1 , FINISH)
6.  CALL SIMPLE_MERGE (LIST, START, MID+1, FINISH)
7.  RETURN

//C++ program for merge sort

#include <iostream.h>

Lab: Programming in C++

NOTES

	 Self-Instructional
22	 Material

// function to merge the two half into a sorted data.

void merge_array(int a[], int low, int high, int mid)

{

	 // low to mid and mid+1 to high array are already
sorted

	 int i, j, k;

	 int temp_arr[high-low+1];

	 i = low;

	 k = 0;

	 j = mid + 1;

	 while (i <= mid && j <= high)

	 // merging of two parts into temp array

	 {

		 if (a[i] < a[j])

		 {

			 temp_arr[k] = a[i];

			 k++;

			 i++;

		 }

		 else

		 {

			 temp_arr[k] = a[j];

			 k++;

			 j++;

		 }

	 }

	 while (i <= mid)

	� // insertion of remaining values from i to mid into
temp array.

	 {

		 temp_arr[k] = a[i];

		 k++;

		 i++;

	 }

	 while (j <= high)

	� // insertion of remaining values from j to high
into temp array.

NOTES

Self-Instructional
Material 	 23

Lab: Programming in C++	 {

		 temp_arr[k] = a[j];

		 k++;

		 j++;

	 }

	� // assign sorted data stored in temp array to a
array.

	 for (i = low; i <= high; i++)

	 {

		 a[i] = temp_arr[i-low];

	 }

}

// A function to split array into two parts.

void merge_sort(int a[], int low, int high)

{

	 int mid;

	 if (low < high)

	 {

		 mid=(low+high)/2;

		 // split array into two parts

		 merge_sort(a, low, mid);

		 merge_sort(a, mid+1, high);

		 // merge arraythem to get sorted values

		 merge_array(a, low, high, mid);

	 }

}

 void main()

{

int arr[10],i,k;

cout<<”Enter 10 values\n”;

for(i=0;i<10;i++)

cin>>arr[i];

//call of merge sort function

merge_sort(arr, 0, 9);

cout<<” \n Sorted Values \n”;

for(i=0;i<10;i++)

cout<<endl<<arr[i];

}

Lab: Programming in C++

NOTES

	 Self-Instructional
24	 Material

Output:

Try Yourself:

	 (i)	Write a program to sort n numbers in descending order using
bubble sort.

	 (ii)	Write a program to implement selection sort method using
functions.

	 (iii)	 Write a program to sort the n names in an alphabetical order.

17.  Write a Program that takes string as input and print it.
//C++ program to take string as input and print it

#include <iostream.h>

#include <conio.h>

void main()

{

char str[15];

cout<<”Enter your name: “;

cin>>str;

cout<<”\nWelcome “<<str;

getch();

}

NOTES

Self-Instructional
Material 	 25

Lab: Programming in C++Output:

Enter your name: Rajan

Welcome Rajan

18. � Write a program to print the length of a given string without using
string function.

//C++ program to count string length

#include<iostream.h>

void main()

{

 int i, count=0;

 char str[50];

 cout<<”Enter any string “;

  cin.getline(str, 50);

		� //getline function allows user to input string
with space

		� //loop will run till it reaches to string
terminator ‘\0’

 for(i = 0; str[i] != ‘\0’; i++)

 {

 count++;

 }

 cout << “\n Length of string is “ << count;

}

Output:

19. � Write a program to check whether a given string is palindrome or not.
#include<iostream>

using namespace std;

int main()

{

Lab: Programming in C++

NOTES

	 Self-Instructional
26	 Material

 int i,len=0;

 char str[50],rev_str[50];

 cout<<”Enter any string “;

 cin.getline(str, 50); //getline function allows 	
							� user to input string with

space

			 //count length of string

 for(i = 0; str[i] != ‘\0’; i++)

 {

 len++;

 }

 	cout << “\n Length of string is” << len;

 		 //copy str to rev_str

 int j=0;

 for (i = len - 1; i >= 0 ; i--,j++)

 {

 rev_str[j] = str[i];

 }

	 rev_str[j] =’\0’; �//reverse string is terminated

	

 //compare both strings

 int flag=0;

 for (i = 0; i < len ; i++)

 {

 if (str[i]==rev_str[i])

 flag = 1;

 else

 {

 break; //exit from loop

 }

 }

 if (flag == 1)

 	 cout<<” \n string is a palindrome”;

 else

 	cout<<” \n string is a not palindrome”;

}

NOTES

Self-Instructional
Material 	 27

Lab: Programming in C++Output:

Try yourself:

	 (i)	Write a program to insert an element in an array.
	 (ii)	Write a program to find sum of elements of an array.
	 (iii)	Write a program to find largest number from an array.	

20.  Write a program to print sum of two matrices.
//C++ program to print sum of two matrices

#include<iostream.h>

int main()

{

 int i,j, m1[10][10], m2[10][10], sum[10][10];

 cout << “Enter the elements of first matrix\n”;

 for (i = 0 ;i < 3 ; i++)

 {

 cout<<”\n enter values for row “<<i+1<<endl;

 for (j = 0 ; j<3 ; j++)

 { cin >> m1[i][j];}

 }

 cout << “Enter the elements of second matrix\n”;

 for (i = 0 ;i < 3; i++)

 {

 cout<<”\n enter values for row “<<i+1<<endl;

 for (j = 0 ; j< 3 ; j++)

 { cin >> m2[i][j];

 }

 }

 cout << “Sum of two matrices \n”;

 for (i = 0 ;i < 3 ; i++)

 {

Lab: Programming in C++

NOTES

	 Self-Instructional
28	 Material

 for (j = 0 ; j<3 ; j++)

 { sum[i][j] = m1[i][j]+m2[i][j];

 cout << sum[i][j] << “\t”;

 }

 cout<<endl;

 }

 }

Output:

21.  Write a program to find out the product of two matrices.
//C++ program for matrix multiplication

#include<iostream.h>

int main()

{

 int i, j, k, m1[10][10], m2[10][10], res[10][10];

 cout << “Enter the elements of first matrix\n”;

 for (i = 0 ;i < 3 ; i++)

 {

 cout<<”\n enter values for row “<<i+1<<endl;

NOTES

Self-Instructional
Material 	 29

Lab: Programming in C++ for (j = 0 ; j<3 ; j++)

 { cin >> m1[i][j];}

 }

 cout << “Enter the elements of second matrix\n”;

 for (i = 0 ;i < 3; i++)

 {

 cout<<”\n enter values for row “<<i+1<<endl;

 for (j = 0 ; j< 3 ; j++)

 { cin >> m2[i][j];

 }

 }

 for (i = 0; i < 3; ++i)

 {

 for (j = 0; j < 3; ++j)

 {

 res [i][j]=0;

 for (k = 0; k < 3; ++k)

 {

 res [i][j] += m1[i][k] * m2[k][j];

 }

 }

 }

cout << “Multiplication of two matrices \n”;

 for (i = 0 ;i < 3 ; i++)

 {

 for (j = 0 ; j<3 ; j++)

 {

 cout << res[i][j] << “\t”;

 }

 cout<<endl;

 }

 }

Lab: Programming in C++

NOTES

	 Self-Instructional
30	 Material

Output:

Try yourself:

	 (i)	Write a program to print sum of diagonal values of a square Matrix.
	 (ii)	Write a program to find highest and lowest element of a Matrix.
	 (iii)	Write a program to convert first letter of each word of a string to

uppercase and other to lowercase.
	 (iv)	Write a program to find substring in string (Pattern

Matching).	

22. � Write a program to print factorial of a given number using user
defined function.

#include <iostream.h>

int fact(int n);

int main()

{

 int n;

 cout << “Enter any number “;

 cin >> n;

NOTES

Self-Instructional
Material 	 31

Lab: Programming in C++ cout << “Factorial of “ << n << “ = “ << fact(n);

 return 0;

}

int fact(int n)

{

 if(n > 1)

 return n * fact(n - 1);

 else

 return 1;

}

Output:

23. � Write a program to check a year is leap year or not using function.
// Program to check leap year or not

#include <iostream.h>

bool leapYear (int y);

int main()

{

 int y;

 cout<<”Enter year: “;

 cin>>y;

 //Calling function

 bool flag = leapYear(y);

 if(flag == true)

 cout<<y<<” is a leap Year”;

 else

 cout<<y<<” is not a leap Year”;

 return 0;

}

bool leapYear(int y)

{

Lab: Programming in C++

NOTES

	 Self-Instructional
32	 Material

 bool flag = false;

 if (y % 4 == 0)

 {

 if (y % 100 == 0)

 {

 if (y % 400 == 0)

 {

 flag = true;

 }

 }

 else flag = true;

 }

 return flag;

}

Output:

24. � Write a program to print array elements using user defined function.
#include <iostream.h>

void display(int arr[5]);

int main()

{

 int arr[5] = { 101, 201, 301, 401, 501 };

 //passing array to function

 display(arr);

}

void display(int arr[5])

{

 cout << “Display array values:”<< endl;

 for (int i = 0; i < 5; i++)

 {

 	 cout<<arr[i]<<”\n”;

 }

}

NOTES

Self-Instructional
Material 	 33

Lab: Programming in C++Output:

25. � Write a program for sequential search using user defined function.
Algorithm: Sequential Search
INPUT : LIST OF SIZE N, TARGET VALUE T
OUTPUT : POSITION OF T IN THE LIST
1. BEGIN
2. SET FOUND: = FALSE
	   SET I: = 0
3. WHILE I≤N AND FOUND IS FALSE
 IF LIST [I] = T THEN
 SET FOUND: = TRUE
 EXIT
 ELSE
 SET I: =I+1
 [END OF STEP 3 LOOP]
4. IF FOUND = FALSE THEN
 WRITE: T IS NOT IN LIST
 ELSE
 WRITE: T IS FOUND AT I LOCATION
 [END OF IF]
5 . END

//C++ program for sequential search

#include <iostream.h>

//definition of sequential Search function

Lab: Programming in C++

NOTES

	 Self-Instructional
34	 Material

void sequential_search (int a[] ,int size ,int key)

{

 int flag , i ;

 flag =0;

 for (i=0 ; i<size ; i++)

 {

 if (a [i] == key)

 {

 flag = 1 ;

 break ;

 }

 }

 if (flag == 1)

 cout<<”value found at “<<i+1<<” location”;

 else

 cout<<”value not found”;

}

void main()

{

int arr[10],i,k;

cout<<”Enter 10 values”;

for(i=0;i<10;i++)

cin>>arr[i];

cout<<”Enter values to be searched”;

cin>>k;

//call of sequential_search function

sequential_search(arr,10,k);

}

Output:

NOTES

Self-Instructional
Material 	 35

Lab: Programming in C++26. � Write a program to print factorial of a number using recursive
function.

//C++ Program to print factorial using recursive
function

#include<iostream.h>

// Factorial Function

int factorial(int n)

{

 if(n > 1)

 return n * factorial(n - 1);

//recursive call of factorial function

 else

 return 1;

}

int main()

{

 int n;

 cout << “Enter a number : “;

 cin >> n;

 cout << “Factorial of “ << n << “ is “ << factorial(n);

 return 0;

}

Output:

27. � Write a program to print Fibonacci series using recursive function.
//C++ Program to print Fibonacci series using recursive
function

#include<iostream.h>

int Fibonacci(int n)

{

 if ((n==1)||(n==0))

 {

 return (n);

 }

Lab: Programming in C++

NOTES

	 Self-Instructional
36	 Material

 else

 {

 return (Fibonacci(n-1)+Fibonacci(n-2));

//recursive call of Fibonacci function

 }

}

int main()

{

 int n,i;

 cout<<”Enter number of terms for Fibonacci Series:”;

 cin>>n;

 cout<<”Fibonacci Series “<<endl;

for (i=0; i< n;i++)

 {

 cout<<” “<<Fibonacci(i);

 }

return 0;

}

Output:

INLINE FUNCTION

	 1.	We must keep inline functions small, small inline functions have better
efficiency.

	 2.	 Inline functions do increase efficiency, but we should not make all the
functions inline. Because if we make large functions inline, it may lead
to code bloat, and might affect the speed too.

	 3.	Hence, it is adviced to define large functions outside the class definition
using scope resolution ::operator, because if we define such functions
inside class definition, then they become inline automatically.

NOTES

Self-Instructional
Material 	 37

Lab: Programming in C++	 4.	 Inline functions are kept in the Symbol Table by the compiler, and all
the call for such functions is taken care at compile time.

28. � Write a program to demonstrate the concept of inline function.
#include <iostream.h>

	 inline int sum(int x,int y)

	 {

		 return x+y;

	 }

	 int main()

	 {

		 cout<<”\n\tThe Sum is : “ << sum(310,230);

		 cout<<”\n\tThe Sum is : “ << sum(145,823);

		 cout<<”\n\tThe Sum is : “ << sum(427,438);

	 }

Output:

Try yourself:

	 (i)	Write a C++ program to find average marks of three subjects of
N students in a class.

	 (ii)	Write a C++ program to take input of two distances in inch-feet
system and stores in data members of two structure variables.
Also, this program calculates the sum of two distances and
displays it.

	 (iii)	Write a C++ program in which user is asked to enter two time
periods and these two periods are stored in structure variables.
The program calculates the difference between these two time
periods.	

	 (iv)	Write a C++ Program to find total salary of N employees in a
department where DA=35% basic_salary and HRA=10% of
basic_salary.

Lab: Programming in C++

NOTES

	 Self-Instructional
38	 Material

29. � Write a program to demonstrate the concept of class and object.
//C++ sample program for class and object

#include<iostream.h>

 //class

class student

 {

 private:    //scope of variables is private

 					 //member variables

 int rno;

 char name[10];

 public:   //scope of functions is public

						 // member functions

void input()

{

 cout<<”\n Enter student roll number :”;

 cin>>rno;

 cout<<”\n Enter student name :”;

 cin>>name;

 }

void display()

{

 cout<<”\n Roll Number :”<<rno;

 cout<<”\n Name :”<<name;

 }

 } ; //class closed

int main()

{

 student obj; //object of student class

 obj.input(); //call of input function

 obj.display(); //call of display function

 }

Output:

NOTES

Self-Instructional
Material 	 39

Lab: Programming in C++30. � Write a program that shows the use of this pointer.
#include <iostream.h>

class Demo

{

private:

 int num;

 char ch;

public:

 void setvalue(int num, char ch)

 {

 this->num =num;

 this->ch=ch;

 }

 void putvalue()

 {

 cout<<num<<endl;

 cout<<ch;

 }

};

int main()

{

 Demo obj;

 obj.setvalue(450, ‘A’);

 obj.putvalue();

}

Output:

31. � Write a program using static variable and static function.
//C++ sample program for static variable and static
function

#include <iostream.h>

class test

{

private:

Lab: Programming in C++

NOTES

	 Self-Instructional
40	 Material

	 static int count; //Static data

	 int n;

public:

 //Constructor

	 test()

	 {

 	 count=count+1;

		 n=count;

	 }

	

	 	 //static function

	 static void function1()

	 {

		 cout << “\nResult is: “ << count<<endl;

	 }

 //Normal function

	 void counter()

	 {

		 cout << “\n Counter is: “ << n<<endl;

	 }

	

	 //Destructor

	 ~test ()

	 {

		 count =count-1;

	 }

};

 int test::count=0;

 int main()

{

	 test obj1;

	 �//Static function is accessed using class name and
scope resolution operator (::)

	 test::function1();

	 test obj2,obj3,obj4;

	 test::function1();

	 �//normal function is accessed using object name
and the dot member access operator(.)

	 obj1.counter();

	 obj2.counter();

NOTES

Self-Instructional
Material 	 41

Lab: Programming in C++	 obj3.counter();

	 obj4.counter();

}

Output:

32. � Write a program using static class and variable.
//C++ program to count the object value using the
keyword static variable

#include<iostream.h>

class static_class

 {

 int n;

 static int count; //static variable

public:

//constructor

 static_class ()

 {

 n = ++count;

 }

 void obj_number()

	 {

 cout << “\n\t Object number is :” << n;

 }

 static void obj_count()

	 {

 cout << “\n Number of Objects :” << count;

 }

Lab: Programming in C++

NOTES

	 Self-Instructional
42	 Material

};

int static_class::count;

int main()

{

 static_class obj1, obj2;

 obj1.obj_count();

 obj1.obj_number();

 obj2.obj_count();

 obj2.obj_number();

 return 0;

}

Output:

33. � Write a C++ program using constructor in a class.
//C++ sample program for constructor

#include<iostream.h>

//class

 class student

 {

 private: //scope of variables is private

 //member variables

 int rno;

 char name[10];

 public: //scope of functions is public

 student()

 {

 cout<<”Constructor \n”;

NOTES

Self-Instructional
Material 	 43

Lab: Programming in C++ rno=0;

 }

// member functions

void input()

{

 cout<<”\n Enter student roll number :”;

 cin>>rno;

 cout<<”\n Enter student name :”;

 cin>>name;

 }

void display()

{

 cout<<”\n Roll Number :”<<rno;

 cout<<”\n Name :”<<name;

 }

 } ;

int main()

{

 student obj;

 obj.input ();

 obj.display ();

 }

Output:

34. � Write a program to demonstrate the use of constructor and
destructor.

//C++ sample program for constructor and destructor

#include<iostream.h>

Lab: Programming in C++

NOTES

	 Self-Instructional
44	 Material

//class

 class student

 {

 private:

 //member variables

 int rno;

 char name[10];

 public

 // constructor

 student()

 {

 cout<<”Constructor \n”;

 rno=0;

 }

// member functions

void input()

{

 cout<<”\n Enter student roll number :”;

 cin>>rno;

 cout<<”\n Enter student name :”;

 cin>>name;

 }

void display()

{

 cout<<”\n Roll Number :”<<rno;

 cout<<”\n Name :”<<name;

 }

 //destructor

 ~student()

 {

 cout<<”\n Destructor \n”;

 }

 } ;

NOTES

Self-Instructional
Material 	 45

Lab: Programming in C++int main()

{

 student obj;

 obj.input();

 obj.display();

 }

Output:

35. � Write a program to add two matrices. Create two objects of the class
and each of which refers one 2D matrix. Use constructor to allocate
memory dynamically and use copy constructor to allocate memory
when one array object is used to initialize another.

#include <iostream.h>

 class matrix

{

 int **a;

public:

 // Dynamic Constructor

 matrix()

 {

 int i,j;

 a=new int*[3];

 for(i=0; i<3; i++)

 a[i]=new int[3];

 cout<<”Enter elements for a 3x3 matrix:\n”;

 for(i=0; i<3; i++)

 for(j=0; j<3; j++)

 cin>>a[i][j];

 }

 // Copy Constructor

 matrix(matrix & x)

Lab: Programming in C++

NOTES

	 Self-Instructional
46	 Material

 {

	 int i,j;

 		 	a=new int*[3];

 	 for(i=0; i<3; i++)

	 a[i]=new int[3];

	 for(i=0; i<3; i++)

	 for(j=0; j<3; j++)

	 a[i][j]=x.a[i][j];

 }

 // Destructor

 ~matrix()

 {

 int i;

 for(i=0; i<3; i++)

 delete a[i];

 delete a;

 }

				 void showdata()

 {

 int i,j;

 for(i=0; i<3; i++)

 {

 for(j=0; j<3; j++)

 {

 cout<<a[i][j]<<” “;

 }

 cout<<endl;

 }

				 }

 friend void add(matrix,matrix);

				 };

void add(matrix m1,matrix m2)

				 {

 int i,j;

 for(i=0; i<3; i++)

 {

 for(j=0; j<3; j++)

				 {

NOTES

Self-Instructional
Material 	 47

Lab: Programming in C++ cout<<m1.a[i][j]+m2.a[i][j]<<” “;

 		 }

 cout<<endl;

 }

			 }

//main function

int main()

		 {

 matrix obj1;

 matrix obj2(obj1);

 cout<<”value of Matrix 1 and Matrix 2\n”;

 obj1.showdata ();

 cout<<”SUM of the Matrices:\n”;

 add(obj1,obj2);

		 }

Output:

36. � Write a program to demonstrate the use of dynamic constructor.
#include <iostream.h>

class dyncons

{

private:

int *p;

public:

Lab: Programming in C++

NOTES

	 Self-Instructional
48	 Material

dyncons ()

{

p=new int;

*p=100;

}

dyncons (int v)

{

p= new int;

*p=v;

}

int dis()

{

return (*p);

}};

int main()

{

dyncons obj1,obj2(50);

cout<<”the value of object obj1 p is “;

cout<<obj1.dis();

cout<<”\n the value of object of obj2 p is:”<<obj2.
dis();

}

Output:

37. � Write a program using static variable.
//C++ program for static variable

#include <iostream.h>

void test()

{

 // static variable

 static int count = 0;

 cout << count <<endl;

NOTES

Self-Instructional
Material 	 49

Lab: Programming in C++ count++;

}

int main()

	 {

  cout << “Static variable “ <<endl;

 		 for (int i=0; i<5; i++)

 test();

 }

Output:

Try yourself:

	 (i)	Write a program to swap two numbers using class.
	 (ii)	Write a program to print numbers from 1 to N using class.
	 (iii)	Write a program to calculate area of a circle, a rectangle or a

triangle depending on input using overloaded calculate function.

38. � Write a program to illustrate the concept of function overloading
on sum function.

#include <iostream.h>

class Test

{

 public:

 int sum(int a,int b)

{

 return a + b;

 }

 int sum (int a, int b, int c)

 {

Lab: Programming in C++

NOTES

	 Self-Instructional
50	 Material

 return a + b + c;

 }

};

int main()

{

 Test obj;

 cout<<”Sum of two integers “<<obj.sum(310, 		
	 220)<<endl;

 cout<<”Sum of three integers “<<obj.sum(12, 20, 23);

}

Output:

39. � Write a program to overload ++ operator.
#include <iostream.h>

class Test

{

 private:

 int num;

 public:

 Test ()

 {

 num=1;

 }

 void operator ++()

 {

 num = num+2;

 }

 void display()

 {

 cout<<”The Count is: “<<num;

 }

NOTES

Self-Instructional
Material 	 51

Lab: Programming in C++};

int main()

{

 Test obj;

 cout<<”Value before ++ operator \n”;

 obj.display ();

 ++obj; // calling of operator void operator ++()

 cout<<”\nValue after ++ operator \n”;

 obj.display ();

 }

Output:

40. � Write a program to demonstrate the overloading of + operators.
#include <iostream.h>

class overloading

{

int value;

public:

void setValue(int temp)

{

value = temp;

}

overloading operator+(overloading ob)

{

overloading t;

t.value=value+ob.value;

return(t);

}

void display()

{

Lab: Programming in C++

NOTES

	 Self-Instructional
52	 Material

cout<<value<<endl;

}

};

int main()

{

overloading obj1,obj2,result;

int a,b;

cout<<”Enter the value of a and b:”;

cin>>a>>b;

obj1.setValue(a);

obj2.setValue(b);

result = obj1+obj2;

cout<<”Input Values:\n”;

obj1.display();

obj2.display();

 cout<<”Result:”;

result.display();

}

Output:

41. � Write a program to demonstrate the overloading of binary arithmetic
operators (+, -, * and /).

#include <iostream.h>

class arithmetic

{

float n;

public:

void get()

{

cout<”\n enter number:\n”;

cin>>n;

NOTES

Self-Instructional
Material 	 53

Lab: Programming in C++}

arithmetic operator +(arithmetic &a)

{

arithmetic t;

t.n=n+a.n;

return t;

}

arithmetic operator -(arithmetic &a)

{

arithmetic t;

t.n=n-a.n;

return t;

}

arithmetic operator *(arithmetic &a)

{

arithmetic t;

t.n=n*a.n;

return t;

}

arithmetic operator /(arithmetic &a)

{

arithmetic t;

t.n=n/a.n;

return t;

}

void display()

{

cout<<n;

}

};

int main()

{

arithmetic a1,a2,a3;

a1.get();

a2.get();

a3 = a1+a2;

cout<<”\n Addition of two number:”;

a3.display();

Lab: Programming in C++

NOTES

	 Self-Instructional
54	 Material

a3 = a1-a2;

cout<<”\n Subtraction of two number:”;

a3.display();

a3 = a1*a2;

cout<<”\n Multiplication of two number:”;

a3.display();

a3 = a1/a2;

cout<<”\n Division of two number:”;

a3.display();

}

Output:

42. � Write a program to get and print student data using single
inheritance.

// program to get and print student data using
inheritance

#include <iostream.h>

//class

class student

 {

 private: //scope of variables is private

 				    //member variables

 int rno;

 char name[10];

 public: //scope of functions is public

					    // member functions

NOTES

Self-Instructional
Material 	 55

Lab: Programming in C++void input()

{

 cout<<”\n Enter student roll number :”;

 cin>>rno;

 cout<<”\n Enter student name :”;

 cin>>name;

 }

void display()

{

 cout<<”\n Roll Number :”<<rno;

 cout<<”\n Name :”<<name;

 }

 } ; //class closed

 class fee:public student

						� //class fee(derived) class is
inheriting student (base) class

 {

 float fee; //default scope in private

 public:

 void input_data()

 {

 input();

						� //call of input function of
student class

 cout<<”\n Enter Fee :”;

 cin>>fee;

 }

 void display_data()

 {

						� //call of display function of
student class

 display();

 cout<<”\n Fee :”<<fee;

 }

 };

Lab: Programming in C++

NOTES

	 Self-Instructional
56	 Material

int main()

{

 fee obj; //object of fee class

 obj.input_data();

 obj.display_data();

 }

Output:

43. � Write a program to demonstrate the concept of multiple inheritance.
#include <iostream.h>

class student

{

protected:

int rno,m1,m2;

public:

void get()

{

cout<<”Enter the Roll no :”;

cin>>rno;

cout<<”Enter the two marks :”;

cin>>m1>>m2;

}

};

class sports

{

protected:

int sm; // sm = Sports mark

public:

void getsm()

NOTES

Self-Instructional
Material 	 57

Lab: Programming in C++{

cout<<”\nEnter the sports mark :”;

cin>>sm;

}

};

class statement:public student,public sports

{

int tot,avg;

public:

void display()

{

tot=(m1+m2+sm);

avg=tot/3;

cout<<”\n\n\tRoll No : “<<rno<<”\n\tTotal : “<<tot;

cout<<”\n\tAverage : “<<avg;

}

};

int main()

{

statement obj;

obj.get();

obj.getsm();

obj.display();

}

Output:

Lab: Programming in C++

NOTES

	 Self-Instructional
58	 Material

44. � Write a program to demonstrate the concept of multilevel inheritance.
#include <iostream.h>

//base class

class top

{

public :

int a;

void getdata()

{

cout<<”\n\nEnter Any Number : “;

cin>>a;

}

void putdata()

{

cout<<”\nValue is:\t”<<a;

}

};

// class middle is derived_1

class middle :public top

{

public:

int b;

void square()

{

getdata();

b=a*a;

cout<<”\n\nSquare Is :”<<b;

}

};

// class bottom is derived_2

class bottom :public middle

{

public:

int c;

void cube()

{

square();

NOTES

Self-Instructional
Material 	 59

Lab: Programming in C++c=b*a;

cout<<”\n\nCube :\t”<<c;

}

};

int main()

{

bottom b1;

b1.cube();

}

Output:

Try Yourself:

	 (i)	Write a program to demonstrate the multilevel inheritance.
	 (ii)	Write a program to demonstrate the multiple inheritance.
	 (iii)	Write a program to demonstrate the virtual derivation of a class.

45.  Write a program to demonstrate function overriding.
#include<iostream>

using namespace std;

 //base class

class base

{

public:

 virtual void display()

 {

 cout << “\nThis is display method of base class”;

 }

 void show()

 {

Lab: Programming in C++

NOTES

	 Self-Instructional
60	 Material

 cout << “\nThis is show method of base class”;

 }

};

 //derived class

class derived : public base

{

public:

 // Overriding method - new working of

 // base class’s display method

 void display()

 {

 cout << “\nThis is display method of derived 	
					  class”;

 }

};

// main function

int main()

{

 derived dr;

 base &bs = dr;

 bs.display();

 dr.show();

}

Output:

NOTES

Self-Instructional
Material 	 61

Lab: Programming in C++46.  Write a program using virtual function.
#include <iostream.h>

class base

{

public:

 virtual void show()

 {

 cout << “\n Base class show:”;

 }

 void display()

 {

 cout << “\n Base class display:”;

 }

};

class drive : public base

{

public:

 void display()

 {

 cout << “\n Drive class display:”;

 }

 void show()

 {

 cout << “\n Drive class show:”;

 }

};

int main()

{

 base obj1;

 base *p;

 cout << “\n\t P object points to base:\n”;

 p = &obj1;

 p->display();

 p->show();

Lab: Programming in C++

NOTES

	 Self-Instructional
62	 Material

 cout << “\n\n\t P object points to drive:\n”;

 drive obj2;

 p = &obj2;

 p->display();

 p->show();

}

Output:

Pure Virtual Function

A virtual function will become pure virtual function when you append “=0”
at the end of declaration of virtual function. Pure virtual function doesn’t
have body or implementation. We must implement all pure virtual functions
in derived class. Pure virtual function is also known as abstract function.
47. � Write a program using pure virtual function/ abstract function.

#include <iostream.h>

class BaseClass //Abstract class

{

public:

virtual void Display1()=0; �//Pure virtual function 	
or abstract function

virtual void Display2()=0; �//Pure virtual function or
abstract function

void Display3()

{

cout<<”\n\tThis is Display3() method of Base Class”;

}

NOTES

Self-Instructional
Material 	 63

Lab: Programming in C++	 };

class DerivedClass : public BaseClass

	 {

	 public:

	 void Display1()

 {

 cout<<”\n\tThis is Display1() method of Derived 	
			 Class”;

 }

 void Display2()

 {

 cout<<”\n\tThis is Display2() method of Derived 	
				 Class”;

 }

 };

	 int main()

 {

	 DerivedClass D;

 D.Display1();   � // This will invoke Display1()
method of Derived Class

 D.Display2(); �// This will invoke Display2()
method of Derived Class

 D.Display3(); 	� // This will invoke Display3()
method of Base Class

	 }

Output:

Lab: Programming in C++

NOTES

	 Self-Instructional
64	 Material

Try yourself:

	 (i)	Write a program that overloads the + operator and relational
operators (suitable) to perform the following operations:
(a) Concatenation of two strings. (b) Comparison of two strings.

	 (ii)	Write a programs functions to find the GCD of two given integers
using pointer.

48. � Write a C++ program to create file (data.txt).
/ /basic file operations

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main ()

{

 ofstream file1;

 file1.open (“data.txt”);

 file1 << “This is my first file.\n”;

 file1.close();

getch();

}

49.  Write a program to create and write on a text file.
// C++ program of writing on a text file

		

#include<iostream.h>

#include<conio.h>

#include<fstream.h>

void main()

{

	 ofstream file_out;

	 char file_name[20];

	 char str [80];

	 clrscr ();

	 cout<<”Enter file name to be created “;

	 cin>> file_name;

	 //create a new file in output mode

NOTES

Self-Instructional
Material 	 65

Lab: Programming in C++	 file_out.open (file_name, ios::out);

	 cout<<”Enter data to be stored “;

	 cin>> str;

	 file_out << str;

	 cout<<”Information stored in file”;

	 //close file

	 file_out.close ();

	 getch ();

}

50.  �Write a program to retrieve data from a text file.
// C++ program of retrieve data from a text file

#include<iostream.h>

#include<fstream.h>

#include<conio.h>

void main()

{

	 ifstream file_in;

	 char file_name [20];

	 char str[80];

	

	 clrscr();

	 cout<<”Enter file name: “;

	 cin>> file_name;

	 cout<<”Enter file name to open”;

	 file_in.open(file_name, ios::in);

	 file_in.get(str, 80);

	 cout<<str;

	 file_in.close();

	 getch();

}

Lab: Programming in C++

NOTES

	 Self-Instructional
66	 Material

51.  Write a program to read and write on a binary file.
#include<iostream.h>

#include<fstream.h>

#include<cstdio.h>

class Student

{

 int rno;

 char name[50];

public:

 void setData()

 {

 cout << “\n Enter roll number”;

 cin >>rno;

 cout << “Enter name “;

 cin.getline (name,50);

 }

 void showData()

 {

 cout << “\n Admission no. : “ << rno;

 cout << “\n Student Name : “ << name;

 }

 };

// function to write in a binary file.

void write_data ()

{

 ofstream file_out;

 file_out.open (“student.dat”, ios::binary | 		
					   ios::app);

 Student obj;

 obj.setData ();

 file_out.write ((char*)&obj, sizeof (obj));

 file_out.close ();

}

//function to display records of file

NOTES

Self-Instructional
Material 	 67

Lab: Programming in C++void display()

{

 ifstream file_in;

 file_in.open(“student.dat”, ios::binary);

 Student obj;

 while(file_in.read ((char*)&obj, sizeof (obj)))

 {

 obj.showData ();

 }

 file_in.close ();

}

};

int main()

{

 for(int i = 1; i <= 4; i++)

 write_record ();	 //Display all records

 cout << “\n List of records”;

 display ();

	

						   //Search record

 cout << “\n Search result”;

 search (100);

	

		 				 //Delete record

 delete_record (100);

 cout << “\n Record Deleted”;

	

						 //Modify record

 cout << “\n Modify Record 101 “;

 modify_record (101);

	

 return 0;

}

Lab: Programming in C++

NOTES

	 Self-Instructional
68	 Material

Try yourself:

	 (i)	What task does the following program perform?
	 #include<iostream.h>

	 #include<fstream.h>

	 int main()

	 {

	 ofstream ofile;

	 ofile.open (“text.txt”);

	 ofile << “geeksforgeeks” << endl;

	 cout << “Data written to file” << endl;

	 ofile.close();

	 }

	 (ii)	Write a program which copies one file to another.
	 (iii)	Write a program to that counts the characters, lines and words in

the text file.

B.C.A.
101 24

LAB: PROGRAMMING IN C++
II - Semester

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

B.C.A.
101 24

LAB: PROGRAMMING IN C++
II - Semester

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

	101 24 _ BCA_Lab Programming in C++_Algappa (Cover) - Copy
	Lab Programming in C++_BCA sem 2_101 24_(CRC)
	101 24 _ BCA_Lab Programming in C++_Algappa (Cover)

